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IE‘S
q

m For r€ [n] and y € £", Hamming ball of radius r and center y

B/(y) ={xeX":d(x,y) < r}.

m d(x,z) < d(x,y) + d(y,z) — for any y € 37", we have

e g < .
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List Decoding: Backgrounds

List decoding (introduced by Elias 1957, Wozencraft 1958): Given
transmitted codeword ¢ € C and received word y € X7, if
d(c,y) < pn, then find an efficient algorithm to list all the
c€ Byn(y) N C where [Byn(y) N C| = L.
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prove P = BPP (Sudan-Trevisan—Vadhan STOC'99).

m Good list recoverable codes (e.g. folded RS codes, multiplicity
codes) — a generalization of list decodable codes — can give
explicit construction of “good” condensers and extractors
(Guruswami—Umans—Vadhan JACM'09). Those constructions
are the fundamental building blocks in the theory of
pseudorandomness.

m Some current cryptographic protocols based on IOPPs (e.g.
protocol STIR in CRYPTO'24) used the list decodability of
Reed—Solomon and related codes, which are fundamental in
the theory of zero-knowledge proofs.
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for all y € 3" and L + 1 distinct codewords ¢, c1,...,c. € C, we
have maxg<i<; d(y, ci)> pn.

Definition (Average-radius (combinatorial) list decodability)

A code CC X" is (p, L) average-radius list decodable if for every

y € %" and every L + 1 distinct codewords ¢y, c1,...,cL € C, we
L

have ﬁ > im0 dly, ci)> pn.

Remark (Algorithmic list decoding)

Given y € " s.t. |Bpn(y) N €| < L, find an efficient algorithm to
list all the codewords c € B,,(y) N C.
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Core Challenge in List Decoding

Sphere Packing: Given a code (subset or subspace of IFy), we
want to determine the best trade-off between the relative
(Hamming) radius p := d/n, the rate R = k/n, and the list size L.
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decoding algorithms!
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For list decoding, what we care the most is a classical family of
linear codes called Reed—Solomon (RS) codes.

Definition (RS codes)

Given n distinct points o, a, ..., a, € Fg, the corresponding
[n, k] RS code is

RSnk(a1, ... o) = {(f(oq), coos Fan)) ‘ gfglﬁ;ix]k, } C F.

Remark: d(RSp «(a1,...,an)) = n— k+ 1. (best trade-off)

Proposition (Singleton bound)

For any [n, k| linear code C C Fg we have d(C) < n—k+1.
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Reed-Solomon Code Codeword: An Example

Let (my, ma, m3) € IF?C’, be a message of length 3. Then the encoder
of RSy 3(av1, a2, a3, aug) is below

(my, ma, mg) S (flan), flas), flag), flas))

where AX) = my + moX + mgX2.
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Theorem (Sudan'97 and Guruswami-Sudan’98)

Given n distinct points a1, o, . .., o € Fq, the corresponding
[n, k| Reed-Solomon code RS, x(a1, ..., an) can always be list
decoded up to the radius n — \/nk with list size at most qn® in
poly(n) time.

Question: Can we design explicit codes with efficient list decoding
algorithms beyond the Johnson bound?
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More About Subinear Codes: Multiplicity Codes

The other one we considered is multiplicity codes, popularized by
Kopparty—Saraf-Yekhanin (STOC'11). Before the formal
definition, we may introduce a notation called Hasse derivative.

Definition (Hasse derivative)

Given a finite field Fy,j € N, and a polynomial f{(X), the j-th Hasse
derivative ) (X) is defined as the coefficient of Z in the expansion

FX+2) =) VX2

ieN

Z. Zhang 18 /37



More About Subinear Codes: Multiplicity Codes

Definition (Multiplicity codes)

An order-s multiplicity code MULT?, , (1, ..., ap) over Fg is
defined as
f (1) flag) - flan)
fW () fW(ag) - FD(a,)

. fIX)EFG[X] s\n
: : : P deg(ak (S (Fq)
f(s=1) (o) f(s=1) (ag) - f(sfl)(an)

where we normally need char(F,) be large enough.
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m It's time to mention seminal works addressing the two former
questions.

m Parvaresh and Vardy (FOCS'05) constructed the first explicit
codes with efficient encoder and (list) decoder beyond the
Johnson bound.

m Guruswami and Rudra (STOC'06) provided the first explicit
codes with efficient encoder and (list) decoder up to the list
decoding capacity! These codes are called folded
Reed—Solomon codes, the same ones as we just introduced.

m Barrier: For folded RS codes of rate R and block length n,
the best known list-decoding radius is 1 — R — ¢, but the list
size of Guruswami-Rudra (STOC'06) is n©(1/9).
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The Open Problem of Guruswami—Rudra at STOC'06

Open Problem (Guruswami—Rudra’06)
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that existential random coding arguments work with a list size of
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It remains an open question to reduce this list size n°/), given
that existential random coding arguments work with a list size of

0(1/e).

The previous state-of-the-art is due to a work of Kopparty,
Ron-Zewi, Saraf, and Wootters (FOCS'18), where they shrink the

list size from n©(1/¢) t (1/5) o(/e) Simplified by a work of Tamo
(IEEE TIT'24).
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Our Results
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Our Results

We fully resolved the near two-decade-old open problem of
Guruswami and Rudra (STOC'06).

Theorem (Chen—Zhang STOC'25)

For L > 1, any appropriate folded RS codes FRS, j g s(a1,. .., an)

of rate R:= k/n and block length n is (ﬁ (1 - %) ,L)

average-radius list decodable. In particular, it is
(1 - R—¢,0(1/c)) average-radius list decodable by choosing
L=0(1/e) and s = O(1/&?).

Remark (Concurrent and Independent Work)

In a concurrent and independent work, Srivastava (SODA'25)

shows the (ﬁ (1 — S_STR;J ,L2) list-decodablility — a weaker

result — for folded RS codes.
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More about Our Results
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More about Our Results

Similarly, our methodology can prove that any multiplicity codes
achieve the near-optimal trade-off in average-radius list
decodability.

Theorem (Chen-Zhang STOC'25)

Let p be a prime number. For any integers s,n, k, L > 1,
multiplicity codes MULT? , (a1, a2, ..., ap) of rate R:= k/n and

block length n is ( (1 — = SLRH ,L) average-radius

list-decodable. In partlcu/ar, itis(1—R—¢e,0(1/¢))
average-radius list decodable by choosing L = ©(1/¢) and

= 0(1/€?).

This also yields an exponential improvement over the previous

state-of-the-art by Kopparty, Ron-Zewi, Saraf, and Wootters
(1/¢).

(FOCS'18), whose approach requires a list size of (1/5)

Z. Zhang 23/37



Generalized Singleton Bound

Our bound (T—Ih (1 — S_SLR+1> ,L) is almost optimal!

Z. Zhang 24 /37



Generalized Singleton Bound

[+1 s—L+1
is stated below.

Our bound (# (1 — =R > ,L) is almost optimal! The evidence

Theorem (Generalized Singleton bound, Shangguan—Tamo

STOC'20)
For any code C of rate R, if Cis (p, L) list decodable and q > L,
then
< L (1-R)
PeT+1 '
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FRS Proof Overview: The First Step

(":;)n\ - |

codewords \

This Hamming ball contains
L + 1 codewords in it

There exist a point y € (F)" and L + 1 pair-wise distinct codewo-
rds ¢, Ca,...,C41 € FRS, kq.s(cv1, ..., ) such that

L+1 k
dy, @) <L{n-—5 ).
2 (7€) < <n S_L+1>
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codewords ¢, Ca, ..., Cr41 € FRS, kg s(a1,. .., ap) such that

L+1 B
dy.¢)<Lln— —— .
lzl: (¥,€) < <n s—L+1>

m This means the codewords must have a lot of “agreements,”
which can be later captured in a hypergraph!

Definition (Agreements)
I(y,©) := |{i: x| = yli]}| € [n], where [n] :={1,2,...,n}.

L+1

Lk
I(y, ¢) > —
DI 0t ()
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New Perspectives: Geometric Agreement Hypergraph

Each ¢ € FRS, ko s(a1,...,ap) is associated to a low degree

J k., : g
polynomial f{X) € F4[X]. Its coefficients correspond to a vector
feFE.

Codeword is associated to f (= [F];

T eFE)y

This Hamming ball contains
L + 1 codewords in it

Z. Zhang 28 /37
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New Perspectives: Geometric Agreement Hypergraph

Consider the folded RS code FRS,, ks (al, ...,Qp), a received
word y € (Fg)", and ¢ vectors fifo... € Fk

Definition (Geometric agreement hypergraph based on

We define the geometric agreement hypergraph (V, £) with vertex
set V = {ﬁ, é, ey f;} and a tuple of n hyperedges

E:={el,e,...,en}, where ¢ := {Ee Vylil = EnC(ﬂ)[]}

Definition (Weight)

We define the weight wt(V, &) := Y7, Wt(e;), where
wt(ej) := max(|ej| — 1,0).

A lot of “agreements” implies the corresponding geometric
agreement hypergraph has large enough weight.
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Geometric Agreement Hypergraph: An Example

fi
[ ) (2
S fs
f3
fa f4
°
Consider an example when ¢ = 5. Given y = (y1,¥2,...,¥n) in

(IFZ)”, the red hyperedge e; = {é, f;, é} tells us that

yi = Enc()[1] := (Bar), b(yar),.... k(Y 1))’
= Enc(f)[1] := (f(en), B(yon), ..., (v o))
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New Perspectives: Geometric Polynomial

The building block of our geometric polynomial is the determinant
of folded Wronskian! But how should we ensure it is NOT
identical zero?

Lemma (Folded Wronskian criterion for linear independence,

Guruswami—Kopparty FOCS'13)

Let k < q and f{, cee f;; € ]Fg. Let v be a generator of]Fg. Then

f{, ce fy are linearly independent over IF if and only if the folded
Wronskian determinant det W, (fi, ..., fy) (X) # 0.
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determinant of folded Wronskian.

Definition (Geometric polynomial)

Given L non-zero vectors ?1,?2, .. ,?L S F’; such that
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New Perspectives: Geometric Polynomial

Object: For a given geometric agreement hypergraph, we can
define a corresponding geometric polynomial based on the
determinant of folded Wronskian.

Definition (Geometric polynomial)

Given L non-zero vectors ?1,?2, .. ,?L S F’; such that

diqu(SpanFq{ﬁ,E, ..., f}) =L € [L]. Then we define the

geometric polynomial V{?-} (X) as the following monic
JieL

polynomial
)‘il-,iQ,»--Jé -det WW(filv 000 ffz)(X):

where \; i, i, € Fyoand {f;,...,f,} forms a F-basis of the
space SpanFq{?l,?g, .. ,?L}.
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Geometric Agreement Hypergraph Provides

Geometric Polynomial With Multiplicity

For fi, oy fm € IFZ, we define (informally) dimg, (7?1, .. ,?m>
as the dimension of the smallest affine subspace that contains all
these vectors.
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Geometric Agreement Hypergraph Provides

Geometric Polynomial With Multiplicity

For fi, ..., fm € Fg, we define (informally) dimg, (7?1, .. ,?m>
as the dimension of the smallest affine subspace that contains all
these vectors.

Theorem (Alternatively stated in Guruswami—Kopparty FOCS'13)
Given L distinct non-zero fi, fo, ..., f, € FX. Let (V,&) be a
geometric agreement hypergraph over )V = {0, ?1, e ,?L} where
E={el,...,en TV}, then Vig., (X) has at least

(s—4+1 Z dimg, (&)
roots with multiplicity, where dim(SpanFq{?l, LR =2
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Contradiction: More Zeros Than Its Degree
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agreement hypergraph has large enough weight.
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A lot of “agreements” implies the corresponding geometric
agreement hypergraph has large enough weight.

implies . Lk
= | —1,00> ———
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The degree of our geometric polynomials are bounded by ¢(k—1).
Contradiction: Zeros (s— £+ 1) 7, dimg,_ (e) are strictly larger
than its degree bounded by ¢(k — 1)!

Definition (Loss function)

We define the loss function Loss : £ — N that sends a hyperedge
e € £ to Loss(e) := max <07 lef — 1 —dimg, (e)) .

Z. Zhang 35/37



Contradiction: More Zeros Than Its Degree

A lot of “agreements” implies the corresponding geometric
agreement hypergraph has large enough weight.
impli . Lk
implies
(*) p—) Wt(V,g) = Z; max(\e;] — 1,0) > m
=
The degree of our geometric polynomials are bounded by ¢(k—1).

Contradiction: Zeros (s—¢+1)Y 7, Jﬁpq (e;) are strictly larger
than its degree bounded by ¢(k — 1)!

Definition (Loss function)

We define the loss function Loss : £ — N that sends a hyperedge
e € £ to Loss(e) := max <07 lef — 1 —dimg, (e)) .

We do NOT have much loss!
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We finish the contradiction by bounding the loss!
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Contradiction: More Zeros Than Its Degree

We finish the contradiction by bounding the loss!
Theorem (Chen—Zhang STOC'25)

Let {?,} ic[L] be a set of distinct non-zero vectors in IFS and vertices
Vi={0,f,...., A} Let dimg, (Spang {fi,...,f}) = (. Consider
a geometric agreement hypergraph (V, &) with n hyperedges

& ={e,e,...,en CV} such that for any proper subset H C V
with |H| > 2, we have Wt(H, E|y) < 5‘}?‘7{‘22 Then, we have the
following upper bound on the loss function

ZLoss e) < ( (=g

i€[n] o Ll

Z. Zhang 36 /37
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Open Problems and Future Directions

m Explicit constructions of Reed—Solomon codes achieving list
decoding capacity.

m More efficient decoding algorithms.
m Generalizations to list recoverable codes.

m A code is (p,£ =1, L) list recoverable iff it is (p, L) list
decodable.

m The optimal trade-off between the list recovery radius p, the
rate R, and the parameter ¢ is not known.

m Recently, (Chen-Zhang STOC'25) proved that RS (and FRS)
codes are NOT (1 — R—¢, £, ¢z 1 — 1) list recoverable.

1+log ¢

On the other hand, FRS codes are (1 — R— a,ﬂ,ﬂo( c )) list
recoverable (Kopparty—Ron-Zewi-Saraf-Wootter FOCS'18).
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The End

Questions?



