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In this project, we will think about removing the prerequisite 4a3 +27b2 6= 0 for the Elliptic curve system

in cryptography. Here we discuss about the group generated by the curve y2 = x3 + ax+ b, 4a3 + 27b2 = 0.

We will give a proof of the group structure and reasons why using singular curves is not secure.

1 The “singular curve” and its group

1.1 The singular curve and its singularity

The curve we get here is not an elliptic curve by the definition in [1]. Here we call it a “singular curve” since

it has a singularity. By the cubic equation discriminant we know x3 + ax+ b = 0 has a double or triple root

if and only if −∆ = 4a3 + 27b2 = 0. Then we will have a singularity on the double or triple root. In fact, as

the picture shows, if there’s a triple root, the singularity will be a cusp; if there’s a double root, it will be a

node.

Figure 1: Two types of singular curves, from [2].

At the singularity S(s, 0), if we draw a line y = k(x − s) intersect the curve, we will get k2(x − s)2 =

x3 + ax + b, so (x − s)2 divides both sides and we know x = s is always a double root or triple root for

the cubic equation. Thus, there are at most two intersections and the line can’t be tangent to the other

intersection (it can’t be a double root as well).
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1.2 The singular curve group

The singular curve group can be constructed similarly to the elliptic curve group. We use the same binary

operation as what we have used in the elliptic curve group, but the set will have a difference: we must remove

the singularity.

If we don’t remove the singularity, the group operation will not be well defined. When we add the

singularity to another point, since we don’t have a third intersection of the line to the curve, and the line is

not tangent to both points, we can’t define the adding result by the addition law. Even if we want to define

the sum as the singularity point or the infinity point, we find this disobeys the group law.

However, after removing the singularity, we will find the set given by other points, together with the

addition we defined in the elliptic curve group, will give us a group structure. We will prove it here.

1.3 Proof for the group structure

To prove it is really a group, we check closure, associativity, identity and inverse.

Identity. The identity 0 is defined as the infinity point.

Inverse. The inverse of (x, y) is defined as (x,−y), and by the addition law we know (x, y) + (x,−y) = 0.

Closure. We verify the group is closed under addition. By the property of cubic functions, we know if

a line has two intersection points with different x coordinate on the curve, then the cubic eqation defined

by intersection the line and the curve has all three roots in the field. Moreover, the third root can’t be the

singularity since it can’t be a double or triple root. Therefore, we know the closure holds when we add two

points (x1, y1), (x2, y2), x1 6= x2. And if we add 0 to a point, or add a point to its inverse, the result will also

in the group. So the group is closed under addition.

Associativity. By definition we know the addition is commutative, however, proving associativity is more

involved. For special cases, such that we have a 0 in the sum (then the result is certainly the sum of the

other two points), or we have a pair of ±A in the sum (A,B,−(A+B) are colinear, so −A, (A+B),−B are

colinear, then −A+ (A+B) = B = (−A+A) +B and if we place them in different orders by commutativity

it can also be transformed to this case), the associativity can be proved easily.

But for generic cases, the associativity law is hard to prove. However, if we can prove the addition

is associative in the elliptic curve group, we can believe the addition is associative in this group as well.

Lemma 2.1 in [3] gave an elementary proof only using the first equation and the algebraic representation of

the addition law. Since the proof doesn’t require the second condition 4a3 + 27b2 6= 0, it can be a valid proof

for the singular curve group as well. Therefore, we can get the associativity.

Therefore, we know it is a group, and moreover, the group is an Abelian group.

2 The security problem using singular curves

2.1 Why we use ECC

Recall the reason why we use the elliptic curve groups but not the number theoretic additive or multiplicative

groups. We want a group “safe” enough, so the discrete logarithm problem is hard to solve in it. For mod p

additive groups Z+
p , the problem is easily solved by extended GCD; for multiplicative groups Z∗

p , we also
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have sub-exponential algorithms, but for general elliptic curve groups, there’s no sub-exponential algorithm

now.

Therefore, if we at last get some groups on which the discrete logarithm problem is not hard enough, we

will think the group is not secure. And in fact, the singular curve group turns out to be too easy.

So below we consider the two types of singular curves: one with a triple root, and the other with a double

root. With a cyclic shift of x we can assume the singularity is (0, 0), and then the two types of curves can

be represented as y2 = x3 and y2 = x2(x+ a).

We will analyze them below. And the contents below are from the theorems in [4], chapter 2.10.

2.2 y2 = x3

Theorem. Let f(x, y) = y/x, for infinity, f(∞) = 0. Then f is an isomorphism from the singular curve

group G to Z+
p .

We prove the theorem. Let t = y/x, then since y2 = x3, we know x = 1/t2, y = 1/t3. Consider adding

(x1, y1) and (x2, y2), we know:

t−2
3 = x3 = (y2 − y1)2/(x2 − x1)2 − x1 − x2

= (t−3
2 − t

−3
1 )2/(t−2

2 − t
−2
1 )2 − t−2

2 − t
−2
1

= (t1 + t2)−2

Similarly, we can calculate:

−t−3
3 = −y3 = (y2 − y1)(x3 − x1)/(x2 − x1) + y1

= −(t1 + t2)−3

Therefore, we know t3 = t1 + t2, and thus this is a homomorphism, whose kernel is not the whole group,

so it is surjective. Since y2 = x3 has two solutions when x is square and no solution when x is not, we know

there are exactly ((p− 1)/2) ∗ 2 = p− 1 points, so with the infinity, there are p points in the group in total.

Therefore, we know we get an isomorphism.

Therefore, we can first use the isomorphism to get the corresponding number in Zp and then use extended

GCD to solve the discrete logarithm problem. Thus, the system is insecure.

2.3 y2 = x2(x+ a)

Theorem. Let α2 = a, f(x, y) = (y+αx)/(y−αx), for infinity, f(∞) = 0. Let H be the multiplicative group

generated by field Fp extending α (if α is in Fp, it is F ∗
p , otherwise it is F ∗

p2). Then f is a homomorphism

from the singular curve group G to H.

We prove the theorem. Let t = (y+αx)/(y−αx), then we also know x+a = y2/x2 = α2(t+1)2/(t−1)2,

so x = 4at/(t− 1)2, y = 4α3t(t+ 1)/(t− 1)3.
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We also substitute x, y into the equations

x3 = (y2 − y1)2/(x2 − x1)2 − a− x1 − x2
−y3 = (y2 − y1)(x3 − x1)/(x2 − x1) + y1

By calculation and simplification we get:

4t3/(t3 − 1)2 = 4t1t2/(t1t2 − 1)2

4α3t3(t3 + 1)/(t3 − 1)3 = 4α3t1t2(t1t2 + 1)/(t1t2 − 1)3

Therefore:

(t3 + 1)/(t3 − 1) = (t1t2 + 1)/(t1t2 − 1)

So we know t3 = t1t2 and thus f is a homomorphism.

Moreover, f is injective since the kernel {∞} ∪ {(x, y) 6= (0, 0)|(y + αx) = (y − αx), y2 = x2(x+ a)} has

only one element ∞.

Therefore, we use the homomorphism and we only need to solve the same discrete logarithm problem in

the group H. Since H is F ∗
p or F ∗

p2 , by [5], appendix E, we learn that Pohlig-Hellman Algorithm can be

used to solve the problem in H, which is the multiplicative group. Therefore, we still have sub-exponential

algorithm to solve the discrete logarithm problem in these singular curve groups, so we think it is insecure.
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